A PEER-TO-PEER ELECTRONIC TRADE SYSTEM

the Zenotta whitepaper

Zenotta AG
Baarerstrasse 57
CH-6300 Zug
info@zenotta.com
WWwW.zenotta.com

Zenotta AG

April 28, 2022

Authors:

Roelou Barry
Andrew Kessler
Andreas Furrer
Byron Houwens

Alexander Hobbs
Richard De Moliner
Miles Timpe

Holly Hoch

Page 1 | 42

mailto:info@zenotta.com
www.zenotta.com

Contents

1 Introduction 3
1.1 Digital economies 4
1.2 Money as memory)
1.3 Digital valueo 6
1.4 Digital ownershipo 6

2 Network protocol 8
2.1 Topology e 9
2.2 Coordination 10

2.2.1 The UNIiCORN 12
2.3 Transactions 14
2.3.1 The DRUID 15
2.3.2 The Zeno type 18
2.3.3 The Smart Data typeo 21
2.3.4 The dual double entry ledger 22
2.4 COnSENnSUS . . . v v v v e e e e 24
2.4.1 Balanced mining 26
2.4.2 Feather checking oL 29
2.4.3 Raft consensus 31
2.5 Memory management oL 31
2.5.1 Smartdata 33

3 Legal assessment 34

4 Conclusion 39

5 Acknowledgments 41

Page 2 | 42

1 Introduction

Bitcoin gave us cash. Digital, machine-readable and executable, distributed, global cash.
While on a social level, Bitcoin has morphed into something more akin to digital gold, the
fundamental underpinnings of the technology gave the world practical digital money for
the first time. Many developments prior to the Bitcoin protocol were necessary in order
for Satoshi Nakamoto to make their peer-to-peer electronic cash system a reality, standing
on the shoulders of protocols such as Digicash (Chaum & van Antwerpen, 1990), pricing
via processing (Dwork & Naor, 1992), Bitgold (Szabo, 2005) and Hashcash (Back, 2002).

Digital systems and the internet allow the world to be connected like never before. In
truth, they allow for a digital world to exist, alongside the real, physical world. For the
moment at least (barring the development of self-aware artificial intelligence that may
be vastly different from our human consciousness) both of these worlds are inhabited by
people. In the physical world, we have a physical presence, and in the digital world, a
digital presence; in both cases an ‘avatar’ with the same wants and desires, the same types
of interactions (albeit in the digital world, somewhat restricted) and the same process of
thought. In order for people to be truly represented in the digital world, our real-world
society has to be reproduced in a digital form.

One quintessential aspect of society in particular is the ability to assign value; to goods, to
services, and to assets generally. In the physical world, value is easily evident, albeit often
subjective. It just makes sense. We understand, as a society, and as human beings, how
physical objects can possess value, and through the related concept of ownership, how
this value can be transferred between individuals and groups. This is not the case in the
digital world. In order to see why, we must turn to economics. Economic value is largely a
function of supply and demand; however, in the digital world, the fundamental mechanics
of supply and demand are not preserved because digital goods can be created, duplicated,
and manipulated at virtually zero cost. Fundamentally, there are two properties that a
thing must possess in order to have economic value:

1. Rivalry (consumption by one party prevents simultaneous consumption by others)

2. Excludability (consumption of a thing can be prevented for certain parties)

When we consider legal systems, the discrepancies are even clearer, and this is due to
the underlying concept of ownership. Only rival and excludable assets are ownable, while
non-rival and non-excludable assets, such as air or water, are public goods available to
everyone. Air is everywhere, accessible to all, and in effectively infinite supply, but a tank
of compressed air is finite, restricted, containerized, and can be physically transferred in a
way that removes it from the ownership of the transferring party. Legal systems must be
able to define and protect rights and ownership for digital assets, which they cannot do
without a form of ownership that creates such a containerizing concept on the machine
level.

Page 3 | 42

Even once you are able to carry the concept of value into the digital world, there is still a
crucial part missing: trade. For trade you need assets, and you need money (or some form
of a medium of exchange). Blockchains have enabled digital money, through the magic
of a ledger-based accounting system combined with distributed trustless consensus. With
this approach one can solve the double spend problem! (Chohan & Chohan, 2021), and
the longer-standing Byzantine Generals’ Problem? (Lamport et al., 1982), and ensure that
money can be sent peer-to-peer with no requirement to trust a third party. The other part
of the economic relationship, however, is missing. Transactions are two-way; without an
asset received in exchange for payment, the ledger merely tracks a gifting economy rather
than a trading economy. This means that any actual trade of money-for-asset must occur
on a layer above the ledger, whether through a third-party exchange or through a smart
contract ran on a virtual machine.

Ensuring two-way trade sets the stage for a real, ledger-based economy within the digital
world and in compliance with legal contractual thinking. The same magic that enables
blockchains to manifest digital money allows digital systems to realise digital trade, when
the ledger works both ways. Combined with ownership, value can then be transferred
between digital identities in a way that preserves the fundamental tenets of distributed,
decentralized consensus and cryptographic security.

1.1 Digital economies

The realisation of this goal is particularly important when one considers the latest evo-
lution of the internet. The initial development of the web revolved around the dissemi-
nation of information. This first incarnation (webl) largely consisted of one-way access
to a repository of information for the average user (read). Later this developed into a
two-way platform for sharing and creating content (read-write).

Since then, the internet has evolved into a social realm where individuals interact, share
personal data, and engage in economic activity. This goes far beyond mere social media,
and is a fundamental shift towards a digital societal identity, with all of the accompanying
societal value and structure, such as rights and privacy.

While many definitions of web3 differ, it is probably described best in this ontology
as read-write-own. This is not only two-way but also peer-to-peer, with individuals
conducting business and personal relationships and transacting, just like in the physical
world.

An excellent example of this is in the gaming world. In-game economies built around
blockchains have begun to emerge, employing the technology of non-fungible tokens
(NFTs) to attempt to embed digital value into digital assets. As an initial experiment,
NFTs have been extremely successful, whether you believe that they have achieved this
goal or not. The overarching concept of the metaverse harnesses the same technology —

the problem of how to determine whether a given digital asset was spent more than once
2fundamentally, a problem describing the difficulty of trusted information transfer without requiring
all participants to be trustworthy

Page 4 | 42

the latest project to emerge in the blockchain and cryptocurrency space, the metaverse is
one of the most fundamental to recreating the structure of value that exists in the physical
world. Communities of identities, with sovereign rights and real estate, exchanging digital
goods within a digital economy.

1.2 Money as memory

In order to transition to this digital utopia we need to embed trade at the blockchain level,
bringing the same tools that gave us digital cash to effect digital trade. As mentioned
previously, blockchains have been able to solve the previously unsolvable problem of digital
money due to their ledger-based functionality — instead of a medium of exchange, there is
a record, which is immutable and requires no trust in a third party. This ledger approach
allows for the solutions to the double spend problem (Chohan & Chohan, 2021), and
the Byzantine Generals’ Problem (Lamport et al., 1982), ensuring that computation only
needs to act on an accounting system rather than on the exchange of specific binary data
through communication channels, which could be easily corrupted.

The parallels between taking such an approach for the newest form of money and one of
the oldest forms of memory are striking. The ‘stone money’ on the Micronesian island of
Yap (Friedman, 1991) was sufficiently unwieldy to require that each stone (some weighing
thousands of pounds) remain in place even when its ownership changed hands. An oral
ledger kept track of who owned what, and for all intents and purposes, money existed as
a form of collective societal or institutional memory.

Money is an ‘instrument of collective memory’ before it is a means of exchange, a unit
of account or a store of value. — Rachel O’Dwyer, Cache society: transactional records,
electronic money, and cultural resistance, 2018 (O’'Dwyer, 2018)

Blockchain-based distributed ledger entries typically impart ownership to digital money
via asymmetric cryptography. A public/private cryptographic key pair creates a digital
identity that mirrors an identity in the real world (although the relationship may not be
one-to-one). Blockchains are also immutable, which means that the memory of ownership
is preserved in a secure and time-resistant fashion.

A layer 1 approach to digital trade is ultimately the only means to effect the transfer
of digital value. If money functions as an instrument of collective memory on the most
fundamental level, trade must as well. A ledger that allows for the mechanics of only
the payment is incomplete. This is particularly important in the digital world, where
it is difficult to demonstrate the uniqueness of the asset. A digital ledger entry (with
appropriately secure and distributed consensus/cryptography) can impart uniqueness,
however, and so incorporating the asset in the ledger in addition to the payment, as an
atomic swap, creates native blockchain trade. Such a system is akin to a native over-the-
counter (OTC) desk but within a layer 1 blockchain protocol.

Page 5 | 42

1.3 Digital value

A very basic ontology for describing value divides the concept into two types: intrinsic,
which is a form of value inherent to the asset and its existence, or instrumental, which
is the utility value of an asset; its purpose, its functionality, or its usefulness as a means
to an end. On a practical level, digital systems consist of files, which act as containers
for knowledge, and applications, which act as containers for logic. While applications can
read and, if necessary, extend existing knowledge within the system, it is the file itself
that contains the knowledge (here used in an abstract, general sense — a file containing
images as art may not be knowledge in a strict sense of the word, but it still contains the
fruits of a author’s creativity, skill, and imagination) and the effort and work that has
gone into developing and recording that knowledge.

Files and applications are treated differently in terms of memory management on the
protocol layer of most digital systems. Files generally persist, while applications are typi-
cally loaded into cache memory and used temporarily for as long as they are needed. This
high-level ontology indicates a strong correlative relationship between files and intrinsic
value, as well as between applications and instrumental value. Applications realise their
value only while loaded in memory, performing their task, while files retain a form of
intrinsic value even while inert and existing merely in storage.

The nature of a file as providing infinitely variable content is demonstrably suited to
represent all forms of digital value, while an electronic coin, or a token, clearly cannot.
As we have discussed, however, while digital coins or tokens can ‘live’ on a blockchain,
files generally cannot — they are more akin to digital objects, and contain binary data,
which needs to be preserved across a communication channel. Writing this data to the
blockchain would be vastly prohibitively expensive, both in terms of block space and in
terms of verification, and would violate privacy.

This realisation seems to suggest that the machinery of a blockchain — with all its benefits
of providing proper digital identity, digital ownership, security, efficiency, and of course
machine readability — cannot be brought to bear on the thing of ultimate value in a
digital system (the file). This would be a shame. The digital utopia offered by blockchain
technology would be missing a vital piece of the puzzle without the incorporation of files
into the digital realm, each capable of being owned via a digital identity and traded in a
digital economy.

1.4 Digital ownership

Thankfully, there is a solution: you govern the file from the blockchain. You do this in
a way that imparts ownership of files to digital identities, whether they correspond to
individuals, or groups, or institutions, and so on. However, you first need a definition
of ownership that can be incorporated into legal systems. We define digital ownership
as a bundle of rights associated with a digital asset (refer to Section 3) that impart the
complete dominion, title or proprietary right in the digital asset.

Page 6 | 42

Practically speaking, we boil this form of ownership (at a high level) down to three key
elements:

1. Being able to demonstrate uniqueness
2. Access & control

3. Protection of content (where relevant)

The first two requirements are fulfilled for on-chain assets on standard blockchains, be-
cause the ledger accounting ensures that each is tracked and identified across its entire
history (regardless of its fungibility or non-fungibility) and the cryptographic public/pri-
vate key pair allows the holder of said key pair to move or onspend the on-chain asset.
The third requirement does not apply to the typical coins or tokens found on a blockchain,
because there is no ‘content’; in any meaningful sense, to protect. However, this third
requirement would apply to a file under blockchain governance, particularly if privacy was
a key concern.

With these key elements, the Zenotta digital system ensures ownership of the digital asset.
In addition, the disposal of the various rights from the bundle of ownership rights (the
low-level, in-detail version of the three requirements above) that we introduce in Section
3 is ensured in such a way that real digital contracts can be negotiated, concluded, and
executed, and in the event of non-performance or default, dispute resolution can also be
handled via the digital system.

This whitepaper is structured as follows. In Section 2 we outline the network protocol,
which consists of a layer 1 blockchain ledger & network that facilitates two-way trans-
actions between a Zeno (our native cryptocurrency) and a token asset. The token asset
type is a broad definition that can be applied across a variety of asset types, and it is
exchanged atomically for Zeno (or for another token asset) through a new, dual double
entry form of ledger. We discuss the topology of the network, which consists of a three-
tiered architecture for low latency and high throughput, and the coordination between
the various node types and users in terms of submitting a transaction, adding it to a
block, mining the block, and adding the block to the chain. We describe the design of
the transactions in our system along with the transaction types, which includes a brief
outline of the economic (‘tokenomic’) model. We outline the consensus mechanism for
each tier of nodes, and introduce a form of balanced mining that aims to make the mining
power across network more inclusive and decentralized. Finally in Section 2 we introduce
the memory management of the transaction types and describe Smart Data, our term
for the asset on the other side of the peer-to-peer electronic trade. Section 3 encompasses
the legal framework surrounding and enabled by the technology presented in Section 2.
Finally, Section 4 presents a few salient conclusions on the technology and how it might
benefit global digital systems.

Page 7 | 42

2 Network protocol

Any network protocol for handling electronic coins, promissory notes, rights, claims or
digital assets combines at least two basic operations:

1. Users employ public/private key cryptography to take control of, and transact with,
their digital value objects.

2. An independent server (or network) timestamps transactions to preserve the globally
correct chronology of transaction order.

In any batch processing of transactions we think of transactions as being wrapped in a
block, even if the batch is designed to admit only one transaction per block. Blocks are
therefore the smallest data structure that can be batch processed by the network.

There are three desirable properties in any distributed network concerned with the transfer
of information. These are formalised by Brewer’s theorem (Brewer, 2012) via the acronym
CAP, which refers to:

1) Consistency — all nodes in a distributed system have a single, current, and identical
copy of the data.

2) Availability — nodes in the system are able to accept incoming requests and respond
with data, without any failures, as and when required.

3) Partition tolerance — if a group of nodes is unable to communicate with other nodes
due to network failures, the distributed system continues to operate correctly.

Any given distributed system can only offer two features by sacrificing the third. As
partition tolerance is a must have, distributed systems typically offer either consistency
and partition tolerance (CP) or availability and partition tolerance (AP).

Blockchains are often seen as a special case whereby all three properties are present (and
thus a violation of Brewer’s theorem). However, the consistency that blockchains offer
is a weaker type known as eventual consistency, which is where consistency is achieved
as a result of validation from multiple nodes over time, rather than simultaneously with
the other two properties. This is where mining comes in, with blocks of transactions
further back in time becoming exponentially more established in the shared state that is
the ledger.

The other major design challenge that distributed systems face is handling latency and
throughput. Blockchain protocols exhibit high latency and low throughput because of the
fundamental design choices required in offering Byzantine Fault Tolerance (BFT); most
notably, the need for every mining node to execute and store computational tasks. The
high latency is in fact a feature rather than a bug, since in Nakamoto consensus (where the
longest chain is designated as the valid transaction history) fast block generation increases

Page 8 | 42

the number of unintentional forks® that emerge during the mining process of finding new
blocks. A higher rate of unintentional forks allow potential attackers to undermine the
security of the chain at a lower Byzantine fault percentage.

Our approach makes use of the advantages inherent to a blockchain in terms of trust-
lessness? and distribution while achieving consistency (C) in addition to availability and
partition tolerance (AP). This is made possible through the use of persistent trustless de-
centralized nodes, which integrate with the non-persistent trustless distributed nodes that
make up the mining network. The persistent untrusted decentralized nodes maintain a
single version of the blockchain, eliminating forks, and achieve their trustlessness property
by taking input from the non-persistent trustless distributed nodes to generate verifiable
randomness that directs the decision-making process. The parallelisation and sharing of
the computational load made possible with this approach vastly increases throughput and
reduces latency compared to a standard mining-only approach.

Our network setup effects the ability to handle two-way trade of payment and asset
natively on the ledger, which we outline in Section 2.3.1. This is a vital component of the
peer-to-peer electronic trade system, and further enables the governance of files through
a trustless notary service.

2.1 Topology

Here we define the network topology of all parties that contribute towards a successful
trade between Alice (making a payment but expecting goods or services) and Bob (trans-
ferring goods or services and expecting a payment). We refer to the persistent trustless
decentralized nodes (two types) as compute nodes & storage nodes, and the non-persistent
trustless distributed nodes as mining nodes.

The compute and storage nodes comprise two (CP-type) decentralized compute and stor-
age ring networks that are used to create and write transaction blocks to the append-only
ledger. Blocks are wvalidated by ephemeral mining partitions that are set on a block-by-
block basis. Each partition is coordinated by a member of the decentralized compute ring
network.

The presence of the compute and storage rings provides users of the network with entities
akin to blockchain service providers, which are able to offer service levels, monitoring, and
efficient auditability. The single copy of the ledger, written to the storage ring, acts as a
“single source of truth” and prevents wasted computation.

Figure 1 shows a basic high-level description of the three node types that work to create
and maintain the blockchain. In conjunction with the user nodes, these form the three
tiers of the network:

1. Compute network — compute nodes

3a blockchain experiences a fork when a single block has two or more children blocks
4this term, which will crop up often, meaning that trust is not needed for the system to work

Page 9 | 42

Completed block

v

Mined Audit I 2
Compute node block request .* . Storage node
(block creation) Re N (block writing)
, .
." o"
Packaged & Audit
block response
Miner

(block mining)

Figure 1: A cartoon depiction of the relationships between the three node types that maintain the
blockchain. Compute nodes package randomly-selected transactions into a block and broadcast
it to the miners to perform transaction validation and mining consensus. The mined block is sent
back to the compute nodes for final checks before it is sent to the storage nodes to be written to
the blockchain. Miners can at any and all times perform auditing checks on the data stored in
the storage nodes.

2. Storage network — storage nodes

3. Contributor network — mining nodes, user nodes

User nodes play no part in verification but they are used as contributors to the verifiably
fair randomness that keeps the compute nodes trustless and impartial (more details in
Section 2.2).

2.2 Coordination

Compute nodes are connected to each other as a decentralized ring network known as the
compute ring; similarly, storage nodes are connected to each other as a decentralized ring
network called the storage ring. Each compute node is connected to at least one storage
node. Mining nodes “apply” to compute nodes for entry into a mining partition. Within
a given mining round, miners who win this application process are assigned randomly to
a specific compute node and then exist within a specific mining partition, separated from
the rest of the active mining network in other partitions. Mining node assignment to a
partition is ephemeral, and is recomputed every round.

Page 10 | 42

Network Node type Function Topology C/A/P

Compute ring | Compute node | Block create Decentralized CP

. User node Send tx .
Contributors Mining node Block verify Distributed AP

Storage ring Storage node Block write Decentralized CP

Table 1: The components of the three-tiered network.

Compute ring

—— Compute node

Contributor (user/miner)

Contributions

Storage ring

Storage node

Figure 2: The topology of the network, shown here a small subset of nodes, for all node types.
Compute and storage nodes are connected as a decentralized ring network while mining and user
nodes form distributed partitions around a compute node and storage node pair.

Partitioned mining nodes and user nodes can send data to a compute node. All mining
nodes (whether selected into a partition or not) and user nodes can request data from
storage nodes as an optional audit.

Miners signal their proof-of-works to their assigned compute node, which then sends the
validated block to the storage node. Once written to storage, other miners signal their
acceptance of the block that was written by continuing to mine new blocks that extend

Page 11 | 42

from the previously-written blocks.

It is important to note a difference here between a standard mining approach (in, e.g.,
Bitcoin) which uses a continuous time framework where the first miner that succeeded in
adding a block to the blockchain will get a reward. In contrast to this, we use a discrete
time framework where more than one miner may succeed within the same time period.
But only one of these successful miners will extend the blockchain and get a reward. The
fair (verifiable) selection of this winning miner out of all successful miners is achieved
through a form of uncontestable randomness, which we describe in the next section. This
verifable form of randomness is also used for other selection processes in order to eliminate
the ability of the compute nodes to control any selection.

2.2.1 The UNiCORN

All contributors (in some way) submit data into an algorithm that produces an UN-
COntestable Random Number (UNiCORN). This algorithm is running on a designated
decentralized node (which can be either a compute or storage node, but not a miner or user
node). The algorithm generates a UNiCORN for each block, which is used downstream
for any required random selection, such as miner partitioning. The paper:

Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth,
unicorn, and trz. Cryptology ePrint Archive, Report 2015/366.
https://eprint.iacr.org/2015/366, 2015

describes in detail a method to generate uncontestable random numbers. In this section
we summarize the relevant steps of this method as shown in Figure 3.

The UNiCORN algorithm starts with a public announcement about a public data gath-
ering phase. During the announced time interval, public contributors (the users and the
miners) send their contributions to the compute ring, which concatenates them in the
order of their arrival to form a total public contribution. At the end of the time interval
the compute ring immediately publishes the public contribution and shortly after that
its commitment value, which consists of the double hash of the total public contribution
concatenated with an internal contribution from each compute node. The compute ring
then computes the slow-timed hash (SLOTH) (Lenstra & Wesolowski, 2015) of the con-
tributions, which produces the uncontestable random number along with a witness value
that allows for a fast verification of the correctness of the uncontestable random number.
The compute ring publishes the internal contributions, the uncontestable random number,
and the witness value, allowing for a public verification of the validity of the UNiCORN.

The UNiCORN enables, crucially, fairness and transparency (and in particular, trustless-
ness). UNiCORNs themselves are perfectly suited for one-off random decision making,
but we employ UNiCORNSs for making a series of fair, random decisions on the part of the
compute nodes. To do this we feed the UNICORN as a seed into a suitable pseudo-random
number generator and then use the output stream to make the following decisions:

1. Selecting which transactions are packaged into a block.

Page 12 | 42

https://eprint.iacr.org/2015/366

Public

contributors UNiICORN Public
announcement
... L S
_________________________ SO e
S0,2 <
public data S0,3 >
gathering >
.................................. So-—sorlsozllsos]l .. public contributions0] ..
¢ —h(h(so || S1)I: commitment ¢ g
... T

(g,w) — sloth(so|| s1)

internal contribution s1
uncontestable random number g
witness w

public
verification

Figure 3: A generalised view of the UNICORN protocol. It begins with a public announcement
that the public data gathering will take place during a given time interval. During that time
interval public contributors send their contributions (sg1, o2, 80,3, ...) to the UNiCORN
protocol, which concatenates these contributions in the order of their arrival to form the public
contribution sg. At the end of this time interval the UNiCORN protocol immediately publishes
the public contribution sy and shortly after that its commitment ¢, which is the double hash of
the concatenation of the public contribution sy with an internal contribution s1. What follows
is the computationally demanding part. The UNiCORN protocol computes the slow-timed hash
(SLOTH) of the contributions. The SLOTH produces two outputs: the uncontestable random
number g and the witness w. The witness w allows a fast verification of the correctness of g.
During the public verification phase everyone interested should be able to perform the verification.
The internal contribution s; is made by the compute nodes.

Page 13 | 42

2. Selecting which miners will participate in mining during the next time period for a
given mining partition.

3. Selecting from the winning miners (assuming more than one miner has found a valid
proof-of-work) which miner’s block is added to the chain.

The pairwise nature of the ledger in enabling payment-for-asset or asset-for-asset trade
means that such a transaction pair receives a single entry in the list of pending trans-
actions, from which the UNiCORN algorithm selects those to become part of the block.
With this approach, both parts of a transaction pair are either selected or not selected.

As discussed, the selection process must be fair and transparent. Fairness is achieved by
selecting the elements uniformly at random from a list of elements, while transparency is
achieved by making the selection process pseudo-random and by publishing the underlying
algorithms such that the correctness of the selection process can be verified.

The pseudo-random number generation process built on the UNIiCORN algorithm can, if
necessary, be weighted according to specific factors — a particularly relevant example is
weighting according to the size of the transaction fee, in order to enable the prioritizing of
transactions with higher fees (for the users) and incentivising the miners further in terms
of the reward obtained through winning the block.

2.3 Transactions

The high-level sequence for transactions across the various network tiers is as follows:

1. Compute nodes receive transaction requests from user nodes and compile blocks of
transactions.

2. Once compiled, blocks are given to mining nodes assigned to a partition to be
validated and mined.

3. Miners who are part of a valid partition and find a valid proof-of-work submit their
solution to their assigned compute node.

4. Compute nodes aggregate all valid solutions into a list and select one winner from
the submissions.

5. That winner’s mined block is written to the storage node and state replicated across
the storage ring.

As described in the previous section, each decision made by the compute nodes in this
process is determined via a UNiCORN-driven pseudo-random number compiled from all
miner and user contributions.

Page 14 | 42

2.3.1 The DRUID

Both one-way and two-way transactions can be processed over the three-tiered network.
Handling a traditional, single signed transfer of coins from Alice to Bob, asynchronously, is
relatively straightforward: if Alice knows Bob’s public address she can conclude a payment
instruction without Bob’s involvement. With a two-way trade of coins for goods, however,
where both Alice and Bob must co-sign a transaction, a different approach is required.
For this we employ what we term a Double Resolution Unique ID (DRUID).

In the event that Alice wants to, e.g., trade a number of Zenos for Bob’s data asset, both
parties will need to enter into a DRUID-based transaction process. This is laid out in
Figure 4. In this process, Alice is attempting to trade her Zenos Z for Bob’s data asset
A. She will create the first half of a DRUID value (D;), which can be as simple as a hash
value, and send it to Bob in combination with an expectation value E; that specifies that
Bob expects a certain number of Zenos (Z) from Alice. This ensures that Bob is trading
his data asset for the correctly desired value and that Alice has expressed her legally valid
intention to enter into this agreement.

Once received, Bob will generate his half of the DRUID value (Dy) and send this back
to Alice in addition to his own expectation E4, in order to specify that Alice expects a
certain data asset (A) from Bob (Bob has then also expressed his legally valid intention
to enter into this agreement). Once both parties have the two halves of the DRUID they
can concatenate them to form the final, common DRUID value (Dg). This value allows
the compute node, which will process the transactions of both parties, to understand that
these transactions need to be considered as a single trade, and allow the contract to be
concluded.

Bob now sends to the compute node the following set of values: A, the data asset he
intends to send to Alice, Ez, the expectation describing the Zenos he expects in exchange
for his data asset, and finally the Dr DRUID, which will be the common value that the
compute node can match to Alice’s transaction. Bob has now fulfilled his contractual
obligation.

Alice does the same in her transaction to the compute node, namely: T, the tokens she
intends to send to Bob, E4, the expectation describing the data asset she expects in
exchange for her tokens, and finally the Dp DRUID, which will be identical to Bob’s.
This is Alice’s fulfillment of her contractual obligation.

A trade between Alice and Bob proceeds via the sequence below:
1. Alice pre-owns some Zenos Z.
1. Bob pre-owns some digital asset A.
it1. Jointly, Alice and Bob generate a Double Resolution Unique ID (DRUID).

iv. Independently, Alice and Bob send their half of the trade with authorization to a
compute node.

Page 15 | 42

Compute node

Alice Bob
z A
(Ez, Dy)
(Ea, D2)
Dr = D1 || D2 Dr = D1 || D2
(A, Ez, Df)
Ea, D

TN (T. Ex Dr)

Figure 4: Alice and Bob use DRUIDs to form a dual double entry on the ledger.

Page 16 | 42

1.

VL.

1.

1.

1.

TL.

Ti.

.

TUL.

TV,

TV,

Trade requests from Alice and Bob are fed into the UNiCORN-generation process
as contributions.

The UNiCORN-driven pseudo-random number generator selects which transactions
are bundled into block n, while the remaining transactions are set for carry over
into future blocks.

The compute node collates transaction halves into valid trades and bundles trades
into blocks to be mined by miners.

Miners submit their coinbase transactions as contributions to the UNiCORN gen-
erator.

The UNiCORN-driven pseudo-random number generator assigns miners to specific
compute nodes. This assignment partitions the mining network. Not all miners are
admitted to mine a given block.

Each compute node enters into a Raft consensus (Ongaro & Ousterhout, 2014)
round to ensure they each share a valid and consistent copy of a block to be mined.

Compute nodes transmit blocks to assigned miners for validation and mining.

As each block mined was originally packaged by a compute node, rapid miner val-
idation of large blocks is possible through a form of statistical checking combined
with a novel data structure (Barry et al., 2021).

Each miner capable of computing a valid proof-of-work in the allotted time and
from a valid partition submits their proof-of-work as a UNiCORN contribution.

A UNiCORN-driven pseudo-random number elects a winning miner from the list of
all miners who have submitted valid proof-of-works and who were part of a valid
partition. The winning miner’s coinbase transaction becomes the winning coinbase.

Valid mined blocks are written to the storage nodes via the compute nodes.
Storage nodes use Raft consensus to agree on written blocks.

A suitable tree of contributions used to compute a UNiCORN is pruned down to a
suitable storage size and written to the storage nodes for future validation.

The compute node here is acting as the transaction’s notary, registering each legally-
binding expression of will by all parties. This role could be fulfilled by any node, in
theory, or even another user, Charlie — and fundamentally removes the need for a smart
contract to be involved in the transfer of an asset for a payment, while remaining trustless,
since the notary remains impartial and merely attests to the DRUID value. If the notary
does not fulfill their role properly the trade simply doesn’t happen, and Alice and Bob
need to find a new notary.

The ability for Alice and Bob to set and define expectations that finalise or revert a trade
enables many possible utilities. Four noteworthy instances are:

Page 17 | 42

- Atomic trade: The expressiveness of smart contract languages is a double-edged
sword, allowing simple code bugs to become serious miscarriages of justice. The
UTXO model of a transaction, however, is extremely simple, and allows a payment
to be sent in a single atomic step, carried out on the blockchain without the need for
a virtual machine equivalent. The DRUID extends this ability to 2 distinct paths for
2 distinct asset types, which can then meet at the 1 point in time that Alice and Bob
wish to execute a trade.

- Governance without control: When the merchant commits to on-spending an
asset to Alice’s control, Alice can set her payment to Bob against the expectation
that the asset is not found on any sanction list. If it is, the expectation is not fulfilled
and the trade is not entered into a block for mining.

- Domain-based payments: A previous entry by Bob might be a digital asset in
the form of a certificate. His associated blockchain public key to the certificate can
be challenged to produce a new signature for proof of liveness. If such proof can be
offered then the certificate can be deemed valid and checked for the domain name,
which aliases a payment address to which Alice’s incoming payment can be assigned.
If all entries match, the payment is included for mining, and if not it is rejected.

- Receipt-based payments: If Alice requests a receipt from merchant Bob, Bob’s
countersigned receipt is proof that he willingly and knowingly accepted payment under
the programmed terms.

2.3.2 The Zeno type

The Zeno is the means of payment on the Zenotta network. It is defined as a blockchain-
based currency, or coin, that is native to the layer 1 blockchain ledger. It functions as the
medium of exchange for digital assets traded on the Zenotta network; namely, for digital
goods and/or services.

The Zeno as a transaction object consists of a script, that executes the transfer of the coin
on the blockchain, and a signature, that gives the owner of the asymmetric public/private
key pair the right to onspend the coin. The scripting language at the low-level compiles
to OPs codes while at the high-level is implemented using the BITML process calculus
(Bartoletti & Zunino, 2018) designed for Bitcoin smart contracts. The script describes
the logic that can be assigned to the resource, e.g. the conditions under which Bob can
receive a certain amount of Zeno from Alice. Figure 5 shows a simple representation of
the Zeno transaction type, where the script references a transfer of 5 Zeno from Alice to

Bob.

The Zeno is a fungible blockchain-based coin, created through the PoW mining process
(see Section 2.4). We outline the issuance of the Zeno in terms of mining and allocation
below.

Page 18 | 42

Zeno type

Signature i Fails s
4 : Alice — Bob 5 Zeno
l Low-level High-level
wallet . op_DUP BHML
i OP_HASH
- OP_EQVERIFY
asym. key pair OP_CHECKSIG

Figure 5: The Zeno transaction type on the ledger, which consists of (i) a signature to assign
ownership of the right to onspend to a wallet containing a public/private key pair and (ii) the
script to be executed that effects the movement of the coin.

Issuance

Zeno issuance follows a fixed supply cap mechanic according to the properties outlined in
the following table:

Number of Zeno

Total cap 10 billion
Treasury (Zenotta Holdings AG) 2.5 billion
Mining cap (Miners, compute nodes, storage nodes) 7.5 billion

The total number of Zeno coins reached will be 10 billion, with 2.5 billion reserved for
a treasury, to be used for stakeholders, a development fund, and an economic activity
fund. The remaining 7.5 billion is mined out via a smoothed issuance curve based on
the emission approach employed by the CryptoNote protocol. The smoothed issuance
is designed to minimize the volatility seen in standard halving mechanics whereby the
reward drops suddenly by half on a particular date. The Bitcoin stock-to-flow model
(PlanB, 2019) lends support to the idea that this sudden reduction in supply is at least
partly responsible for the extreme bull market/bear market cycles.

The sub-unit of the Zeno is the zent. A number with a large number (90) of divisors was
chosen as the conversion factor between the zent and the Zeno:

Page 19 | 42

Coin sub-unit

1 Zeno 25200 zents

This particular conversion factor is the 24th antiprime, or highly composite number,
in the sequence of positive integers with a greater number of divisors than any smaller
positive integer. This antiprime number has 90 divisors, and 9 prime factors. The use of a
number with a large number of divisors facilitates the use of fractional payments without
the need for rounding. At the same time we stay within the bounds of the u64 integer type
employed in our codebase for the total cap in zents of 10 billion x 25200 = 2.52 x 104

The block reward in zents is calculated using the total Zeno supply and the current Zeno
supply in the market via the following formula:

block reward current supply zent factor

\ / /

br=(M - A) x 2% x 25200 x bt

| |

total supply block time
(in minutes)

Figure 6: The equation determining Zeno issuance, based on the CryptoNote protocol.

In a practical network protocol, issuance must be implemented using bitwise operators,
in order to ensure consistent performance across different hardware types. This allows
operations to be performed on the bit level and therefore proceed at the maximum possible
speed. Additionally, this approach ensures the consistency of floating point operations
across different architecture types. In Bitcoin and bitcoin-like protocols this manifests
requiring the block reward to drop by half (the ‘halving’) every n blocktimes. This is
due to the bitshift operator being applied to the block reward (the left-hand side of the
equation). We apply it to the recursive right-hand side of the issuance equation, which
allows for a smoothed curve without the sudden halving jumps that likely have undesirable
economic properties due to sudden supply shocks. Therefore, the block reward in zents
(for a 60 second blocktime) is given in practical terms by

reward = (total supply — current supply) >> 25. (1)
The mining emission is divided into two parts, with the miners taking the majority and

Page 20 | 42

the compute and storage nodes being allocated a small percentage that varies over time
(starting at 15% and reducing smoothly to 5% via a reverse logistic function). This
rewards the compute and storage nodes for the larger role that they play in the initial
start-up phase of the network, and to recoup capital costs, and to incentivize miners to
play a larger role in the network later on.

2.3.3 The Smart Data type

The Smart Data type is the other half of the transaction (refer to Section 2.5). There
are two Smart Data types: on-chain and hybrid on/off-chain, which possess different
properties. In both cases the creation mechanism for these assets works in a similar
way to a standard coinbase transaction, with users constructing a Smart Data creation
transaction which spawns a value from nothing. This is submitted to the compute ring
for inclusion into the block.

In order to prevent the standard abuse of a asset whose creation is ‘free’, e.g. DDOS
attacks, the requirement to create new Smart Data tokens of both types is to do some work,
in the form of auditing a part of the blockchain and the randomness that has contributed to
the UNiCORN seed (see Section 2.4.2). This involves an interaction between user nodes
and storage nodes, whereby the user nodes will be required to do a very light Proof-
of-Work that feeds into a process known as Shuriken auditing. This process employs
successive communication with the storage nodes that ramps up the difficulty that each
subsequent auditor experiences on the event of a disagreement (see Barry et al. (2021) for
more details).

Smart Data type I (on-chain)

The Smart Data type I, on the most basic level, functions as a receipt that constitutes a
countersigned acknowledgement that the payment was willingly and knowingly accepted,
under the programmed terms of the transfer. However, it can also be used for representing
any digital assets on-chain. It is defined as a blockchain-based token that is native to the
layer 1 blockchain ledger.

The structure of the Smart Data token type I as a transaction object is identical to that of
the Zeno type, as shown in Figure 7. There are certain OPs codes that can be employed
in the script for the Smart Data token type I that are not available for the Zeno type,
for example OP_END, which is used to burn the Smart Data token and remove it from
circulation (this is not possible for a Zeno). The issuance model is unlimited, and the
creation (as described above) is user-based and resource-limited.

Smart Data type II (hybrid on/off-chain)

The Smart Data type II is a hybrid on/off-chain resource, that constitutes a decentralized
file format (described in Section 2.5). The on-chain component is defined as a blockchain-
based Smart Data token that is native to the layer 1 blockchain ledger.

Page 21 | 42

Smart Data type |

Signature Sc",pt s
4 ob —> Alice 1token :
l ow-level High-level
wallet OP_DUP BitML
OP_HASH
3 OP_EQVERIFY
ym. key pair OP_CHECKSIG
. OP_END

Figure 7: The Smart Data transaction type I on the ledger, which consists of (i) a signature to
assign ownership of transfer rights to a wallet containing a public/private key pair and (ii) the
script to be executed that effects the movement of the Smart Data token.

The structure of the Smart Data type II as a transaction object includes the signature and
script components that are also present in the Smart Data type I and the Zeno, but with
the addition of a pointer that connects the on-chain smart data token with the off-chain
file component of smart data (extension *.ta). This pointer (known as the Data Rights
Signature, or DRS) employs a unique encoding and encryption schema, with four hash
values and an encoding scheme placed on the blockchain (refer to Figure 16) that ensures
digital twin resolution and allows for governance of the off-chain file from the blockchain.
The script incorporates on the high-level both the BITML process calculus and the POw-
ERSHELL scripting language (Jones, 2020) that allows for containerized operating system
logic to be executed off-chain from contracts that are on-chain. This pointer mechanism
constitutes the ‘smart data protocol’ that integrates with the network protocol.

Finally, the wallet contains, in addition to the public/private key pair, two encryption
keys K; and K,, which encrypt the content of the off-chain file (for more detail on how
these keys are used see Figure 16).

Issuance of the Smart Data type II is the same as that of Smart Data type I, which is
unlimited in number but limited by resource — users wishing to create Smart Data of type
IT must perform some validation of the ledger.

2.3.4 The dual double entry ledger

The Zenotta blockchain ledger is based on unspent transaction outputs (UTXOs). This
is an accounting approach that relies on outputs of transactions, received by a user, that
can be spent at an unspecified date in the future. Transactions therefore consume existing
UTXOs and create new UTXOs as they are processed, being combined or divided to reach

Page 22 | 42

Smart Data type Il

Signature Script i Pointer
4 ob —> Alice 1DRS |
l ow-level High-level
wallet OP_DUP BitML
OP_HASH Powershell |
3 OP_EQVERIFY *ta Encryption envelope
ey par OP_CHECKSIG i
enc. key Ki 5 : :
enc. key Ko OF: . Header § File content i

Figure 8: The Smart Data transaction type II on the ledger, which consists of (i) a signature to
assign ownership of transfer rights to a wallet containing a public/private key pair (ii) the script
to be executed that effects the movement of the Smart Data token (iii) a pointer to an off-chain
file (extension *.ta). This pointer mechanism is known as the Data Rights Signature (DRS)
and consists of four hash values and an encoding scheme, as described in Figure 16. The file is
composed of the content, which is protected by encryption, and a file header, which is binary
metadata containing information about the file itself, such as the author, the jurisdiction where
the file is valid, and the option for programmable logic.

the required amount that needs to be transacted.

The choice of the UTXO accounting approach means that the legal framework surrounding
the Zenotta digital system (see Section 3) can be applied per transaction, which extends
the flexibility of peer-to-peer cash to legally-defended peer-to-peer trade.

The DRUID process outlined in Section 2.3.1 constitutes a UTXO-based approach to the
trade of a payment for an asset. Each UTXO-denominated ledger (payment ledger; asset
ledger) is handled separately and combined through the dual double entry (DDE) into a
single ledger that matches the two histories of the payment and the asset at the moment
of trade (see Figure 9). The inherent asychronicity in the two separate histories — the
arrows of time that allow for a spend to occur in the future — is handled by folding them
together into a single trade through the DRUID.

The employment of a dual double entry ledger gives something akin to a native blockchain
over-the-counter (OTC) system. This means that a user can execute an atomic transaction
of a payment-for-asset (or payment-for-payment, or asset-for-asset) on the chain without
employing a smart contract. Auditing of these transactions can be done in real-time
through the UTXO table, and, most importantly, each trade is visible and immutably
stored in the blockchain ledger.

Page 23 | 42

Double entry ledger (payment) Double entry ledger (asset)

Date Transaction details Debit Credit Date Transaction details Debit Credit
User: Alice 1 Zeno User: Alice 1 DRS
24th Feb 2022 24th Feb 2022
User: Bob 1 Zeno User: Bob 1 DRS

| ¥

Dual double entry ledger
Payment Asset
Date Transaction details)) .)
Debit Credit Debit Credit
User: Alice
1 Zeno 1 DRS
DRUID: 8743b52063
24th Feb 2022
User: Bob
1 Zeno 1 DRS
DRUID: cd84097a65)
.

Figure 9: The dual double entry ledger, which tracks the payment and the asset separately and
combines them atomically through the use of the DRUID. The process of matching the two
histories of the payment and the asset, at the moment of trade, enables such an accounting
system and allows for asynchronicity between the two halves of a trade. This is made possible
by a transaction notary that times the two inputs and folds them into a single trade via the
DRUID. Note that previous ledger approaches in cryptocurrencies and blockchains revolve around
standard double entry ledgers, which only deal with unidirectional information, limiting the
function of machine-executable trade for digital assets.

2.4 Consensus

The fundamental decision that every blockchain network must make is which node will
append the next block to the blockchain. This decision is made using a consensus mech-
anism. A substantial number of consensus mechanisms exist, all possessing different
properties in terms of security, complexity, and resource cost.

Without wishing to go into detail on the various consensus mechanisms and the compar-
isons between them, we will simply say that an approach where the resource cost requires
a continued commitment is preferred, rather than a capital one. A continued resource
commitment has the advantages of reducing centralizing effects and providing security
against the threat of competing alternative histories (of the ledger). With computation
as the resource, this approach links the process of consensus with the physical world, since
computation is energy, and ensures that the source of truth that is the blockchain ledger
is built through a physical proof.

To this end we employ Proof-of-Work (PoW) as our consensus mechanism, but in a role
that is altered from the standard approach due to the presence of our three node types.

Page 24 | 42

Fundamentally, in a blockchain, the consensus mechanism is used to select a truly random
‘leader’ to add the next block to the chain. Since all miners mine different blocks, and
they choose the transactions that go into each block, this essentially means that no miner
is able to select specific transactions for a sustained period of time, since the likelihood
that a particular miner is the leader for many subsequent blocks is low. The resource
cost of mining ensures that this process stays random, i.e. that it is extremely difficult
to amass enough resources to consistently be the leader.

In our system, transactions are added to a block via the verifiably fair randomness pro-
vided by the UNiCORN, a process carried out by the compute nodes. This means that
every miner receives the same block in a given mining round. Here, the consensus mech-
anism applied to the miners is used to produce a random seed that (in part) determines
which transactions are added to the block, and so the resource cost of mining in this
setup ensures that this random seed stays random, i.e. it is extremely difficult to amass
enough resources to consistently influence the random seed through the public contribu-
tions phase, or indeed to overwhelm the public contributions phase in a similar way to a
Sybil or a DDOS attack. The mining consensus process also, as in standard Bitcoin-like
blockchains, creates the immutable link between blocks via a hash value that contains the
header of the previous block, with computational work backing this immutability.

E() vDF.()(11)

Prev Hash Prev Hash
Root Hash
B p
Nonce
Current Next
Block Header Block Header

Figure 10: The process carried out by the mining nodes in order to achieve consensus. The
block header is first fed through an expansion function that outputs an element of the domain of
the verifiable delay function VDF4(.), which creates a delay via a set of deterministic sequential
steps. The output from VDFq4(.) is concatenated with the block header as input to the hash
function Hy(.), the output of which becomes a winning hash if the nonce tried results in a hash
below a certain threshold.

The mining process is shown in Figure 10. The standard mining process for, e.g., Bitcoin
that takes the block header and feeds it into the hash function H(.) to produce (with
a valid nonce) the hash for the prev hash field of the next block is modified slightly to
include an additional verifiable delay function (VDF) along with two parameters d and p.

Page 25 | 42

The purpose of these two parameters is to allow for a variable puzzle difficulty between
miners, which is separate functionality from the standard difficulty adjustment that the
network makes in PoW mining in order to preserve an approximately constant blocktime.

The VDFy(.) is described in the paper (Boneh et al., 2018):

Dan Boneh, Joseph Bonneau, Benedikt Bunz, and Ben Fisch. Verifiable
Delay Functions. Cryptology ePrint Archive, Report 2018/601.
https://eprint.iacr.org/2018/601, 2018.

This function requires a specified number of sequential steps to evaluate, yet produces
a unique output that can be efficiently and publicly verified. The number of required
sequential steps depends on the delay parameter d. Along with the function value a
witness parameter is output (referred to as ‘the proof” in Boneh et al. (2018)). The witness
allows for fast forwards verification of the correctness of the function value, allowing peer
miners to verify an extremely long delay regardless of their processing power.

The parameter p alters the number of iterations within our hash function, which employs
a modified Keccak sponge construction (Bertoni et al., 2013) as shown in Figure 11. While
both d and p have no functional limit, there is a practical limit on p in terms of verification
— should the number of iterations be increased past a given threshold, it may be the case
that a machine with a low hashrate is unable to verify the hash within the required time.
The presence of the VDF is therefore partly to ensure that the individual miner difficulty
can be tuned without limit, as well as to provide a second dial with alternative economic
properties (see Section 2.4.1 for more details).

The precise form of expansion function and the VDF are detailed in a separate technical
paper which can be found at http://www.zenotta. io.

The modification of the consensus approach that redirects PoW into generating a UNi-
CORN for decision making rather than to elect a leader to add the next block to the
chain (as in standard PoW) removes the power of the 51% attack in gaining control over
the blockchain ledger. The public contributions that determine the UNiCORN seed are
rendered verifiably random even if just one participant is honest, and the slow-timed hash
(SLOTH) adds a layer of security preventing the compute node from trying several inter-
nal contributions (see Figure 3) and selecting from among them the one that results in a
random number with particular or desired properties.

2.4.1 Balanced mining

The functionality involving the parameters d and p allows for the assignment of individual
mining difficulties as an addition to the global mining difficulty that requires the winning
hash to be below a certain threshold. These individual difficulties allow for the effective
hashrate among miners to be balanced — a term that does not mean that all effective
hashrates are made equal but rather refers to the movement of the effective hashrate
distribution towards equality. A miner with an extremely large amount of processing
power can be slowed down by dialing d and p up, while a miner with a very low hashrate

Page 26 | 42

https://eprint.iacr.org/2018/601
http://www.zenotta.io

5 OOl A A O Oz $256bits
A

V7l
\ 4
Y
fa L
Y
Y
V7]
A 4
Y
Y
A 4
Y

r =1088 bits | |04
1344 bits

\ 4
<

LR

c=512bits| |0

\ 4
A 4
A 4
\ 4

~
P

Figure 11: The hash function used in the mining process shown in Figure 10. We employ a
modified Keccak sponge construction with a parameter p that refers to the number of additional
iterations of the permutation function f (for more details see Bertoni et al. (2013)) beyond the
absorbing phase. This modified version of Keccak retains the same security properties as SHA3-
256, and is functionally equivalent to SHA3-256 with p = 0.

can be ‘sped up’ by dialing d and p down (or, in a relative sense, simply by dialing their
peer miners up).

These dials are set (for each individual miner) through a peer-to-peer algorithm that
determines the ‘node temperature’ of the miner in a given mining round and adjusts it
via a simple heat equation, namely

n—1
et + 1) = wlt) + 53 (e (t) = unlt)))
i=0
where uy(t) is the node temperature of the miner at time ¢, and miner k is connected with
the miners ¢(k,0), c(k,1), ..., c(k,n —1).

The node temperature refers to the hashrate of a miner, as determined by the final
nonce reached by the end of the mining round. Miners are assumed to start with a
nonce of zero and increment by one each time until they reach a value that satisfies
the winning hash criterion as per the standard difficulty adjustment. The verification
process conducted by peer miners ensures that miners do not gain a consistent advantage
by gaming this system since the verification check includes (i) the value of the miner’s
determined hashrate relative to previous rounds (to prevent lying and/or sandbagging)
as well as (ii) a minimum number of rounds that the miner must have participated (to
ensure that the balancing/redistribution equation has time to do its job and to prevent a
strategy of repeated re-connection leading to an anomalously-high initial hashrate).

Page 27 | 42

miner j miner k

4 e e 4

o)

2

O T e e U UL e e R X
of [[®[u® n©®)])] u®|nk(®)]

:

g =,
0

.. X

=

5

>

DN) V.

Figure 12: Three phases to compute the miner node temperatures for the next time period. In
the first phase the miners check for reachability and exchange basic information. In the second
phase the miners exchange temperature information and signatures. In the third phase the
miners verify the received signatures.

Figure 12 shows the simple procedure for assessing the miner node temperature and
subsequently determining the appropriate adjustment of the dials d and p. In this diagram
t refers to the time period during which mining takes place, puby is the public key of miner
k during time period ¢, uy(¢) is the node temperature of miner k£ during time period ¢,
n(t) is the number of miners that miner & is connected to during time period ¢, and s; k(%)
is the signature that miner j generated for miner k& during time period ¢. Finally, hy(¢) is
the hash of the IDs of the peer miners combined with the hash of the entire set of values
already mentioned from the previous round.

The practical implementation of this in a real mining network is naturally more complex
than this brief description implies; there are approaches that would constitute a gaming
of this algorithm that can be mitigated in a variety of ways but not eliminated completely.

Page 28 | 42

Economic and game theoretic arguments were also incorporated into the design in terms
of incentives and return on investment (ROI) of technological advances. Thus, it is im-
possible to make a prediction for the degree of balancing that would be achieved in the
network without specifying a number of assumptions; rather than do this, we present the
approach in potentia as (i) reducing mining centralisation (ii) increasing the efficiency
of the network (iii) reducing the competitive greed that drives extremely high levels of
energy consumption. In particular, reducing mining centralization not only increases se-
curity but also increases fair distribution of the coin through the mining block reward.
For more details and specifics, as well as a discussion on the various attack surfaces and
how to mitigate them see Hobbs et al. (2021).

2.4.2 Feather checking

We employ a probabilistic approach to block verification in order to maintain distributed
verification with a low barrier-to-entry even in the event of very large blocks. We refer to
this probabilistic block verification as “feather checking”. Each miner must only verify a
subset of the Merkle tree (i.e., a “feather”). A feather represents a tree path from one or
more transactions to the Merkle root, and in order to perform the verification a miner must
be supplied with the transaction(s), the Merkle root, and any necessary sibling hashes
along the Merkle tree path. Miners receive this information from the storage nodes.

The storage nodes can either provide all sibling hashes along the tree path from transaction
i to the Merkle tree root, or a limited number. The former case is referred to as ‘full sibling
hash provision” and the latter case as ‘limited sibling hash provision’. With full provision
each miner is only required to verify a single transaction during each challenge, which
they do by computing the hash of transaction ¢ and the hashes of all nodes along the
transaction-root path. The storage node provides therefore all sibling hashes of the nodes
along the transaction-root path.

If the Merkle tree is not a perfect binary tree, e.g. if the number of transactions 7" in the
block is 297! < T' < 2%, some sibling nodes along the transaction-root path may not exist.
In this case the missing sibling node is replaced by the hash of the existing sibling node.

We briefly describe the limited sibling hash provision case for the storage node and derive
the appropriate equations that determine the number of challenges n required for a given
certainty C' of validation. We assume that the sibling hashes are provided sequentially
level-wise from level ¢ = 1 down through ¢ = d — 1